Referenzen

Antigenerkennung durch T-Zellen, https://www.ncbi.nlm.nih.gov/books/NBK27098/

Die Produktion bewaffneter Effektor-T-Zellen, https://www.ncbi.nlm.nih.gov/books/NBK27118/

T-Zell-Rezeptor_Genrearrangement, https://www.ncbi.nlm.nih.gov/books/NBK27145/

Tumorimmunität, https://www.ncbi.nlm.nih.gov/books/NBK27104/

Komponenten des Immunsystems, https://www.ncbi.nlm.nih.gov/books/NBK27092/

Antigenrezeptor und Signalwege, https://www.ncbi.nlm.nih.gov/books/NBK27130/

Angeborenes und erworbenes Immunsystem, https://www.ncbi.nlm.nih.gov/books/NBK27090/

Almasbak H, Aarvak T, Vemuri MC. CAR T Cell Therapy: A Game Changer in Cancer Treatment. J Immunol Res. 2016;2016:5474602.

Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA. 2009;106:3360-5.

Cartellieri M, Bachmann M, Feldmann A, et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol. 2010;2010:956304.

Chang ZL and Chen YY. CARs: Synthetic immunoreceptors for cancer therapy and beyond. Trends Mol Med. 2017;23:430-50.

Dotti G, Gottschalk S, Savoldo B, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257:107-26.

Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90:720-4.

Hinrichs CS, Borman ZA, Gattinoni L, et al. Human effector CD8+ T cells derived from naïve rather than memory subsets possess superior traits for adoptive immunotherapy. 2011;117:808-14.

Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987;149:960 68.

Levine BL, Miskin J, Wonnacott K, et al. Global Manufacturing of CAR T Cell Therapy. Mol Ther Methods Clin Dev. 2017;4:92-101. Li H and Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8:573-89.

Maher J, Brentjens RJ, Gunset G, et al. Nature Biotechnol. 2002;20:70 75.

Maus MV and Levine BL. Chimeric antigen receptor T-Cell therapy for the community oncologist. Oncologist. 2016;21:608-17.

Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modifed T cells in chronic lymphoid leukemia. N.Engl.J.Med. 2011;365:725-33.

Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388-98.

Shi H, Sun M, Liu L, et al. Chimeric antigen receptor for adoptive immunotherapy of cancer: latest research and future prospects. Mol Cancer. 2014;13:219-4598-13-219.

Wang X and Riviere I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics. 2016;3:16015.

Yu S, Li A, Liu Q, et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol. 2017;10:78-017-0444-9.

Zhao Y, Wang QJ, Yang S, et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol. 2009;183:5563-74.